1,239 research outputs found

    Metastable Feshbach Molecules in High Rotational States

    Full text link
    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.Comment: 4 pages, 5 figure

    Two-step Doppler cooling of a three-level ladder system with an intermediate metastable level

    Full text link
    Doppler laser cooling of a three-level ladder system using two near-resonant laser fields is analyzed in the case of the intermediate level being metastable while the upper level is short-lived. Analytical as well as numerical results for e.g. obtainable scattering rates and achievable temperatures are presented. When appropriate, comparisons with two-level single photon Doppler laser cooling is made. These results are relevant to recent experimental Doppler laser cooling investigations addressing intercombination lines in alkali-earth metal atoms and quadrupole transitions in alkali-earth metal ions.Comment: accepted by Phys Rev

    Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture

    Full text link
    We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schr\"odinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure

    Optimizing cyanobacterial product synthesis: Meeting the challenges.

    Full text link
    The synthesis of renewable bioproducts using photosynthetic microorganisms holds great promise. Sustainable industrial applications, however, are still scarce and the true limits of phototrophic production remain unknown. One of the limitations of further progress is our insufficient understanding of the quantitative changes in photoautotrophic metabolism that occur during growth in dynamic environments. We argue that a proper evaluation of the intra- and extracellular factors that limit phototrophic production requires the use of highly-controlled cultivation in photobioreactors, coupled to real-time analysis of production parameters and their evaluation by predictive computational models. In this addendum, we discuss the importance and challenges of systems biology approaches for the optimization of renewable biofuels production. As a case study, we present the utilization of a state-of-the-art experimental setup together with a stoichiometric computational model of cyanobacterial metabolism for quantitative evaluation of ethylene production by a recombinant cyanobacterium Synechocystis sp. PCC 6803

    Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements

    Full text link
    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet 4^4He and 87^{87}Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17−4+1a_{4+87}=+17^{+1}_{-4} a0a_0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    A modern Fizeau experiment for education and outreach purposes

    Full text link
    On the occasion of the laser's 50th anniversary, we performed a modern Fizeau experiment, measuring the speed of light with a laser beam passing over the city centre of Marseille. For a round trip distance of almost five kilometers, the measurement has reached an uncertainty of about 10−4^{-4}, mainly due to atmospheric fluctuations. We present the experimental and pedagogical challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201
    • 

    corecore